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ABSTRACT 

An important element in many wireless communication activities is distinguishing between different radio 
signals. In this paper, we address some important problems within radio communication signal 
classification, one of which is the detection of unknown signal formats. To tackle some of these problems, 
we propose a combined classifier, consisting of two different neural network types, and evaluate its 
performance on a variety of semi-realistic radio communication signals. Experimental results indicate 
that the proposed classifier can exploit the individual strengths of the neural networks and achieve both 
good discrimination between known, and reliable detection of unknown signal formats. We also argue that 
combining classifiers may be beneficial in terms of adapting to changing requirements. 

1.0 INTRODUCTION 

Today's military operations depend on extensive use of wireless communication technologies. Effective 
communication is a necessity in network-centric operations but hostile monitoring of radio transmissions 
may also be utilised to the benefit of any opponents. In a military setting an important objective is to 
establish an overview of the situation. Monitoring of radio signals may reveal vital information regarding 
the detection, localisation and identification of an opponent. Traditionally, operators who were trained to 
recognise various signal formats based on manual ‘listen in’ techniques performed the identification. 
Conventional analogue FM radios will still be around for a number of years but the increasing use of 
various digital radio systems calls for a different approach to classification of radio communication 
signals. The time aspect of the signal analysis is crucial. Also, the extensive use of digital encryption 
effectively hinders signal identification based on the information content. This requires automatic signal 
classification based on technical measurements rather than manual user intervention.   

The term ‘signal classification’ implies that there exists some a priori knowledge about the various types 
of communication signals that are to be analysed. Usually this may be true but modern radio environments 
are more diverse as the radio systems are capable of adapting their characteristics to changing traffic 
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requirements or radio propagation channel effects.  In a non-co-operative environment one must also take 
into account that unknown signal formats may turn up, perhaps introduced by a counterpart in order to 
confuse or deceive. Thus, in a military setting the ability to detect unknown signal formats will be highly 
relevant.   

This paper gives a short overview of the main principles of pattern recognition and how they can be 
utilised for automatic classification of radio communication signal formats.  The issue of detecting 
unknown signal formats is specifically addressed. Numerous comparative studies have indicated that 
artificial neural network approach is promising in terms of classification performance, speed of execution 
and robustness to noise and propagation channel degradation. A novel combined neural network classifier 
is proposed. The performance of this classifier is evaluated on sampled radio-signal sequences.  

2.0 ISSUES ON SIGNAL MODULATION CLASSIFICATION 

This paper is based on the issues raised by the use of communication signal classification in a military 
context. However, the ability to recognise various radio communication signal formats is of interest in 
several fields within the civilian sector as well. For instance, the introduction of Software Defined Radios 
may allow for radio equipment that is able to adapt the radio interface according to changing traffic 
requirements and radio environments. The reconfiguration of the radios may in principle be a result of 
manual user intervention. A more sophisticated approach would be to enable the radio terminals to be 
auto-adaptive, i.e., the terminals are able to autonomously reconfigure their radio interface [1]. This 
concept will require the introduction of some degree of ‘situation awareness’ in the receivers. 
Characterisation of the radio environment in terms of recognising available radio signal formats is one 
important part of such ‘situation awareness’. Another example of non-military applications is 
governmental bodies, like the telecommunication authorities, whose task is to coordinate the use of the 
radio spectrum on national level. Methods for automatic classification of radio communication signals will 
be of great benefit for their surveillance of the radio spectrum.   Depending on the application the signal 
classifier will have to meet different requirements with respect to performance, complexity, cost and speed 
of operation. Nevertheless, most of the basic principles may be identical.  

In a military context the recognition of communication is of interest as input to the ongoing situation 
evaluation.  By surveillance of the electromagnetic spectrum one may deduct vital information on the 
activities in the field. Timely access to such information is imperative, which implies that the recognition 
process must be automated yet maintaining the possibility of manual analysis of new or unknown signal 
formats. We can thus view a communication signal classifier system as a sensor aimed at providing 
information about which communication systems or units are active within a certain area. Depending on 
the application one may want to emphasise the issues of error control and classification accuracy 
differently:  

• A surveillance system should ideally be more sensitive towards detecting hostile communication 
activity rather than own forces communication activity. Unknown communications should be 
detected and ‘tagged’ for further off-line analysis.  

• Full signal identification may not necessarily be required if the information from the signal 
classifier is used to select appropriate EW countermeasures. A rather rough classification will 
probably be sufficient to find a proper jamming signal format.  

• If the classifier is used for controlling a software radio the capability of detecting unknown 
formats is of minor interest. Such a classifier should ideally be able to distinguish among a set of 
known signal formats with good accuracy.  

The proposed combined signal classifier scheme will allow for introduction of mechanisms for error 
control that can be tailored to the application. 
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3.0 APPROACHES TO MODULATION CLASSIFICATION 

A vast range of modulation recognition methods has been proposed in the research literature. Much of 
these are based on standard pattern classification approaches, which we describe in Section 3.1. Section 
3.2 describes issues regarding pre-processing and Section 3.3 shows examples of features that can be 
extracted from intercepted signal segments. Section 3.4 describes approaches to automatic classification. 

3.1 Pattern Classification Approach 
We find computer-based pattern classification important in many areas and applications, such as fault 
detection, medical diagnosis, biometric identification, speech and optical character recognition and, as we 
will focus on, communication signal recognition. Despite this myriad of types of data (e.g., sensor data, 
digital images, acoustic or radio signals) there exists a generic pattern classification approach (Figure 1). 
The figure shows that first some form of pre-processing is performed. This might be, for example, signal 
or image processing operations, such as segmentation, transformation and filtering, in order to obtain a 
uniform representation of the data. Next is the process of reducing the dimensionality of the data by 
extracting a smaller number of features that emphasise the characteristics of, and distinctions between, the 
classes. The features then serve as inputs to the classifier, which performs the final classification task. In 
order for the classifier to perform classification, it must obtain information on what data represent what 
class. This is often referred to as learning. That is, based on pre-labelled examples from each class 
(training examples) the classifier learns to map the data to their corresponding class. It also learns to 
generalise, such that new and unclassified examples are classified accordingly.  

 
 

Pre-
processing 

Data Reduction / 
Feature Extraction Classification

Class A 

Class B 
Class C 

 

Figure 1: Generic Pattern Classification Approach 

3.2 Communication Signal Pre-processing 
The basic pre-processing requirements for modulation classification are to obtain a signal representation 
that is as consistent as possible and to reduce degradations that may confuse the classifier. Thus, the pre-
processor block in Figure 1 is responsible for quality assurance and for adapting the data input into a 
suitable form before feeding it to the feature extractor block. A fundamental restriction in the pre-
processing of unknown radio signals is that both the signal format and the transmission channel are 
unknown to the intercept receiver. The pre-processor may nevertheless be able to estimate some of the 
main signal parameters like carrier frequency and bandwidth that is required for adapting the signal 
processing to the intercepted signal. Typically, at the pre-processor stage of a radio signal classifier system 
the following issues are addressed: 

• Selection of time segments that contain signals of potential interest to the classifier. This will, for 
instance, include removal of segments that are heavily degraded by noise. 

• Fading signal channels will introduce amplitude variations that may be interpreted as amplitude 
modulation by the classifier. For example, attenuation from hydrometeors will cause slow 
amplitude variations, whereas for mobile communication channels the received signal may exhibit 
fast signal level variations. Such unwanted signal variations must be compensated for. 

• Signal matched filtering will improve the signal/noise ratio. Estimating the optimal bandwidth of 
the post-detection filter will thus be a very important part of the pre-processor stage. 
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• Carrier and symbol synchronisation may be required for classifier algorithms that are based on 
coherent detection. The synchronisation should, in these cases, be included in the pre-processing 
stage. 

• Interference from unwanted signals may disturb the reception of the target signal. Such 
interference should ideally be suppressed as far as possible. This may be achieved by appropriate 
filtering in the frequency domain by gating out strong interference events in the time domain, or, 
if feasible, by the use of directive antennas. 

• Multi-path transmission channels will introduce propagation degradations that may confuse the 
classifier. To some extent, various equalisation techniques may suppress the effect of the 
degradation but equalisation of unknown signal formats is a non-trivial task. 

3.3 Feature Extraction 
A communication signal represented in the time domain contains vast redundancy and contains, without 
further analysis, little information that can aid the discrimination of modulation formats. This necessitates 
some form of feature extraction. A natural choice of dimensionality reduction is to represent a time-
domain signal in the frequency domain through some form of spectral analysis. For example, 
periodograms, Welch periodogram and bispectrum techniques have been proposed. The spectrum samples 
can then be used as features either directly [2] or through the extraction of some statistical properties [3]. 
Statistical features - such as the mean, standard deviation and higher order statistical moments - can also 
be directly extracted in the time domain, i.e., from the instantaneous amplitude (envelope), phase and 
frequency of the signal [3]. Features extracted from the time domain are less computationally intensive 
and have shown to be effective for many modulation classification tasks [4]. An alternative to the above 
feature extraction approaches is to obtain the signal's constellation shape and then perform some form of 
pattern matching in order to determine the modulation format [5].  

Whereas some of the feature extraction methods proposed in the literature assume full a priori knowledge 
about the communication signal, i.e., frequency, bandwidth, symbol rate and synchronisation, other 
features can be extracted with little or no a priori knowledge. Choosing an appropriate set of features thus 
depends on both the type of modulation formats that the classifier is being trained to classify and in which 
scenarios (co-operative or non-co-operative) the system is intended to operate. 

3.4 Classification Methods 
Having obtained a feature vector, a classifier must then use that to output a class label or, alternatively, a 
set of probabilities or confidence levels that indicate the prediction results. One way of categorising 
different types of classifiers is into statistical, decision theoretic, fuzzy, or neural network-based 
approaches. There is no classifier type that is superior to the others for all types of problems. Thus, in the 
research literature on signal classification, all approaches are represented.  

The different statistical approaches have in common that they seek to create distribution models for each 
class based on the training data. The predicted class can then be found by selecting the highest posterior 
probability when evaluating the input on these distributions. The probability distributions are based on 
either parametric or non-parametric techniques [6]. The former assumes a known distribution model (e.g., 
Gaussian), and is concerned with finding suitable parameter values, based on the training data, in order to 
approximate the true distribution. The latter technique is concerned with creating distribution models 
solely based on the training data and is not constrained by the standard distributions. It can thus offer a 
more representative distribution model on the expense of more parameter setting. Both parametric (e.g., 
[7]) and non-parametric (e.g., [5]) techniques have been proposed for modulation classification. 

For decision theoretic classification approaches, modulation formats are determined by traversing a 
decision tree where the features are tested against thresholds at the tree nodes until reaching an end-node, 
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which indicates a format. A decision tree requires few resources and executes very quickly. It is therefore 
suitable for online classification and for implementation in resource-limited systems. Due to its simplicity 
and good classification abilities, the decision theoretic approach has been popular for modulation 
classification [3], [8]. Recently, fuzzy logic-based modulation classifiers have also been proposed. These 
can, contrary to the decision tree, make 'soft' decisions. I.e., provide varying degrees of 'certainty' to the 
modulation formats [9]. 

An approach that has proved to be very effective for modulation classification, is that based on artificial 
neural networks (neural networks for short). These are loosely based on the operation of the brain, and 
have been applied to a wide range of engineering applications throughout the last two and a half decades. 
It is their fast execution (once trained) and robustness to noise that have made them popular for 
modulation classification. Comparative studies have also shown that neural networks outperform 
statistical and decision tree-based modulation classifiers [3], [10].  

Rather unfortunately, much of the existing work on modulation classification has been overly focused on 
reporting classification success rates that exceed that of others by tweaking classifier parameters. What we 
believe is lost in this 'race' is the realisation that many of these results are merely hypothetical as they are 
based on ideal computer-generated signals simulated in ideal transmission channel models. In fact, some 
of the problems discussed in Section 2 would in many cases swamp these insignificant differences in 
classification performance. In fairness, some have rightly addressed some of these challenges. For 
example, Liedtke [4] highlights the importance that one cannot assume full a priori knowledge of signals 
in a non-co-operative setting and that in these situations, the procedure should be able to adapt to handle 
new signal formats. Kim et al. [10] implement and evaluate classifiers on a digital signal processor and 
also test the classifiers on real off-air signals. Furthermore, Hatzichristos [11] and Venalainen et al. [12] 
evaluate modulation classification in a multi-path environment. In this paper, we will look at another 
challenge, namely that of detecting unknown formats in addition to handling the classification between 
known formats. Due to previously reported benefits of neural network-based signal classification we too 
focus on neural networks.  

4.0 ARTIFICIAL NEURAL NETWORKS 

The general function of a neural network is to produce an output pattern when given a particular input 
pattern, and is loosely related to the way the brain operates. Learning these mappings is done in 
conceptually the same way as the brain. That is by generalising from a number of examples. Neural 
networks consist of a number of fairly simple computational devices that resemble the brain's neurons, 
interconnected with weighted connections that resemble dendrites and axons. Several types of neural 
networks exist but the most common one used for modulation classification has been the Multi-Layer 
Perceptron. 

4.1 Multi-Layer Perceptron 
A Multi-Layer Perceptron (MLP) is a network of non-linear Perceptrons. A Perceptron has n inputs and n 
corresponding weights, and first calculates the weighted sum of inputs. This sum is then input to a non-
linear activation function that produces the Perceptron's output response; typically a value between –1 or 0 
and +1. In a MLP, the Perceptrons are organised in layers, such as illustrated in Figure 2. 



Classification of Communication Signals and  
Detection of Unknown Formats Using Artificial Neural Networks  

P6 - 6 RTO-MP-IST-054 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 

 

Input Hidden layers Output 

Σ

w1 

w2 

wn 

… 

PERCEPTRON MULTI-LAYER PERCEPTRON 

 

Figure 2: Example of a Perceptron and a 2-hidden-layer MLP with 3 inputs and 3 outputs 

The MLP has one input layer, one or more hidden layers and one output layer. When the network is 
operating, the data is propagated through the network in a forward direction layer by layer. For 
classification tasks, the input layer usually consists of the feature vector (c.f. Section 3). The hidden and 
output layers map the data from feature space to an output space that represents the predicted 
classification. Usually in a C-class classification task there are C outputs, each of which represents a class. 
The network is then trained to produce a high (active) value on the output that corresponds to the class, 
whereas the other outputs are low (inactive). This is called 1-of-C representation.  

MLPs are commonly trained using the back-propagation learning algorithm. This requires a set of 
training examples, i.e., pre-labelled examples from each of the classes that we want to classify. 
Essentially, the algorithm consists of two passes through the different layers of the network: forward and 
backward. When training data are presented to the input layer, they are propagated through the network 
with fixed (initially random) weights on the connections. This is the forward pass. When this is completed, 
an error is computed, which is effectively the difference between the actual and desired outputs. This error 
is then propagated back through the network from the output layer to the input layer. During this back-
propagation the weights on the connections are adjusted according to the error, in order to lower the error 
in the next forward pass. These forward and backward passes continue until an acceptably small error is 
obtained.  

To get an appreciation of how the MLP operates, we construct a problem classifying the five modulation 
formats 2- and 4-level ASK and PSK, and MSK. Assuming that signal examples can be represented in 
terms of two features, Figure 3 (left) graphically visualises the distribution of signal examples1. With these 
training examples, the MLP can be trained to construct decision boundaries, such that, when in operation, 
it can classify new examples accordingly. An essential requirement for any classifier is that, instead of 
correctly classifying only examples that look exactly like the training examples, it learns to generalise. 
Thus, the classifier should be able to correctly classify examples that are situated in principally the same 
area in feature space as the training examples. Figure 3 (right) visualises the decision space as created by a 
MLP, where each marker indicates how the MLP will classify that particular input. The white 'lines' and 
'spaces' indicate that the MLP does not provide a clear classification. The lines can be interpreted as 
decision boundaries, at which the MLP goes from classifying one class to classifying another class. The 
larger white spaces can be interpreted as sections where the MLP provide no class (low values on all 
outputs). 

                                                      
1 Details of signal generation and feature extraction will be covered in Section 6. For now, it suffices to regard the different signal 
examples as points in the two-dimensional feature space. 
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Figure 3: Left hand side: Training examples represented in 2D feature space. 2ASK signals are 
represented as plusses, 4ASK as crosses, 2PSK as circles, 4PSK as squares and MSK as 

triangles. Right hand side: Decision space as created by a MLP. 

The figure illustrates a couple of important points. First, we can see that the decision boundaries are 
generalised well, and that new examples of the five modulation formats are likely to be correctly 
classified. Secondly, we note that the MLP's decision regions do not reflect the distribution of training data 
but rather seem to be unbounded. That is, new inputs that lie far from any training data cluster may still be 
classified as being one of the modulation formats. For example, an input example that lies in the lower left 
corner of the graph will be classified as MSK even though this example looks nothing like the MSK 
training examples. The significance of this weakness is highlighted in Figure 4, where we, in addition to 
the training data, plot examples of 2- and 4-level FSK and 16-level QAM. 

 

Figure 4: Training examples together with 'unknown' signal types 2FSK, 4FSK and 16QAM 

Now we see that, in the event of receiving signal types that are not in the training set, the MLP is 
incapable of detecting the presence of these. In fact, the MLP will misclassify both 2FSK and 4FSK 
signals as MSK and will also misclassify 16QAM as either 2PSK or 4ASK. In case no other actions are 
taken a priori to detect the presence of unknown signal types, this can limit the usage of the MLP to co-
operative modulation classification only. To address this problem we will, in the next section, look at an 
adaptation of the MLP. 

4.2 Auto-association Neural Network 
The MLP has, in addition to classification, typically been applied to problems such as function 
approximation and dimension reduction, e.g., non-linear principal component analysis [13]. The latter can 
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be achieved using the MLP for auto-association. Auto-association implies that the input data are 
reconstructed at the output and thus that the number of output nodes must be the same as the number of 
inputs. Also, in order to perform dimension reduction, a hidden layer must consist of fewer nodes than the 
number of nodes in the input/output layers. If the network is successful in reconstructing the data, the 
activations at the hidden layer thus represents a compressed representation of the data. Figure 5 shows an 
example of what we call an auto-association neural network (AANN).  

 Input Hidden layer Output 

 

Figure 5: Example of an auto-association neural network (AANN) with 5 inputs and 3-node 
hidden layer. 

The last decade has also seen an increased use of the AANN for detection and classification tasks. It has 
been shown that by training the network to recognise data of a particular type, it will reconstruct similar 
data with only a small error margin. If atypical data are input, however, the reconstruction error will be 
large. By thresholding the reconstruction error the network can be used to detect anything that deviates 
from the 'norm'. This is often referred to as novelty detection [14] and has the benefit that it only requires 
the 'normal' data for training in order to detect anything that deviates from this norm.  

For modulation classification we see the immediate benefit of the AANN as it can detect unknown signal 
types of which we have no available training data. Furthermore, by creating one AANN for each of the 
known formats, we can not only detect unknown modulation formats but also classify the known ones. 
The resulting decision space obtained by using 5 AANNs for the 5-format modulation classification 
problem is shown in Figure 6. The decision regions for the modulation formats are now bounded around 
the training examples and thus anything that falls outside these sections can be detected and classified as 
unknown. For example, the 'unknown' 2FSK, 4FSK and 16QAM examples shown in the figure will be 
correctly detected. On the other hand, there are also drawbacks to using AANNs for classification. 
Because the AANNs are trained independently from each other, the decision regions of known formats 
may intersect when the classes are similar. Therefore, for inputs situated at the border between modulation 
formats, more than one AANN may indicate that the input belongs to their format. The AANNs may 
therefore be more imprecise than the MLP in discriminating between classes. For example, see how the 
decision boundary between 2ASK and 4ASK created by the MLP, (Figure 3) reflects the distribution of 
training data better than that created by the AANNs (Figure 6). 
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Figure 6: Left hand side: Training examples together with the 'unknown' signal types 2FSK, 
4FSK and 16QAM. Right hand side: Decision space as created by 5 AANNs. 

In summary, comparing the MLP results (Figure 3) with the results from the AANNs (Figure 6), we can 
conclude that the MLP is best suited for discriminating between modulation formats, whereas the AANNs 
are useful for detecting unknown formats. The next section looks at the combination of these two neural 
network types. 

5.0  COMBINED ARTIFICIAL NEURAL NETWORK CLASSIFIER 

As we have seen examples of above, stand-alone classifiers may be suitable for some types of problems 
but not for others. Such limitations have raised the awareness of combining classifiers for solving more 
complex classification problems [15]. The problem to solve may either be naturally modular, for which a 
combined classifier structure is obvious, or be of such size that de-composing the problem into sub-
problems is required. As for military modulation recognition, there may be different requirements 
according to the type of scenario (e.g., surveillance, counter-measures or demodulation of friendly 
communication). We can break those requirements down to (a) good classification among known 
modulation formats and (b) reliable detection of unknown formats. To accommodate these we propose a 
method of combining the MLP and AANN such that we maximise the strength and minimise the weakness 
of each neural network type. 

In order to explain the rationale behind the combination method we need to formalise the output 
representation of the two network types. Using the 1-of-C representation, we can let the c-th output of a 
MLP classifier denote a certainty factor, µc, where –1 < µc < 1 and where each c represents one of C 
modulation formats. We let µc > 0 indicate evidence supporting the hypothesis that the input belongs to 
modulation format c, and let µc < 0 indicate evidence against the input belonging to class c. The magnitude 
of µc will indicate the degree of evidence for or against. For a C-class modulation classification problem C 
AANNs are required. Each AANN will, after being trained, provide a reconstruction error en for any given 
input n. By using a threshold, τc, we can say that en < τc indicates evidence for the hypothesis that the 
input, n, belongs to modulation format c. Similarly, en  > τc indicates evidence against the hypothesis. To 
get a unified representation of the MLP and AANN outputs, we map the AANN reconstruction error, en, 
onto a certainty factor, αc, where –1 < αc < 1 and where αc can be interpreted in the same way as µc. This 
mapping function is illustrated in Figure 7 (Appendix A contains details on the extraction of the certainty 
factors). 



Classification of Communication Signals and  
Detection of Unknown Formats Using Artificial Neural Networks  

P6 - 10 RTO-MP-IST-054 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 

 

Figure 7: AANN Certainty function.  

Now, for each of the C modulation formats, the combined neural network must evaluate the advice from 
both the MLP and AANNs, that is µc and αc respectively, before making an overall decision, in the form of 
a combined certainty factor, φc. The decision-making is based on the following: 

• A negative αc, regardless of µc, indicates that the input, n, is not of modulation format c. 

• A negative µc, regardless of αc, indicates that the input, n, is not of modulation format c. 

• A positive µc and a positive αc indicate that the input, n, is of modulation format c. 

Based on this reasoning we can express the combined certainty factor as φc(µc, αc) = min(µc, αc). The 
combined neural network is illustrated in Figure 8. 
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Figure 8: Combined Neural Network.  

Figure 9 depicts the result from applying this combined neural network to the 5-class modulation 
classification problem. The figure illustrates how the combined neural network uses the MLP's decision 
boundaries between the classes, which ensures good discrimination of modulation formats, whereas it uses 
the AANNs to create bounded decision regions, which ensures detection of unknown formats. 
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Figure 9: Left hand side: Training examples together with the 'unknown' signal types 2FSK, 
4FSK and 16QAM. Right hand side: Decision space as created by the combined neural network. 

The next section presents a more comprehensive experiment, which illustrates the performance of the 
combined neural network approach. 

6.0  EXPERIMENTAL ANALYSIS 

A main goal for the experiment was to test and assess the proposed classification methodology under 
controlled, yet realistic conditions. Section 6.1 describes the signal specifications such as generation, 
transmission and receiver set-up, and feature extraction. In Section 6.2, the classification results are 
presented and assessed.  

6.1 Signal Specifications 
The signals used for the training and testing of the neural network were generated directly at RF frequency 
using a vector signal generator. Dedicated software on an external PC provided full control over the 
generation of waveforms in terms of defining the information bit-streams, the modulation constellations 
and the signal/noise ratio. The set-up also allows for the introduction of signal degradations due to 
interference and multi-path propagation effects, though this was not exploited in this experiment. On the 
receiver side the RF signal was down-converted to a fixed IF of 21.4 MHz before digitalisation in a high-
speed A/D converter.  Finally the received signals were down-converted to 50 kHz and decimated digitally 
by a factor of 1/256 producing I- and Q-samples at a rate of ≈250 kHz.  An overview of the set-up for 
signal generation and recording is given in Figure 10. 

Control PC 
 R&S WinIQSIM 

GPIB 

Vector Signal Generator 

R&S SMIQ 

Receive & Recording PC 

Echotek ECDR-21 
Ref. Clock 
Generator 

Front-end Receiver 

R&S ESMC 

 

Figure 10: Signal generation and receiver set-up. 
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6.1.1 Data Source 

In contrast to radar signals, radio communication signals normally carry some information content. The 
classification algorithms must not be sensitive to the content itself. The training and testing of the 
proposed signal classifier is therefore based on randomised signal sequences. Real, live communication 
signals cannot be expected to be fully randomised. Yet, as long as all symbol states are statistically equally 
represented within the signal sequence one may assume that the classifier should perform without 
additional degradation. Thus, a detached pseudo random bit sequence generator was developed which use 
a time-seeded random initial status. This ensured that each data sequence used for modulation of the radio 
signal was unique. 

6.1.2 Modulation 

For this experiment the classifier was intended to recognise and classify the six basic digital modulation 
formats 2- and 4-level ASK, PSK and FSK. These signal formats were thus used for both training and 
testing. In order to test the classifier's capability of detecting unknown signal formats, signal sequences of 
16- and 32-level QAM, MSK and π/4DQPSK were generated. All signals had a fixed data rate of 10 
kSymbols/s and were distorted with additive white Gaussian noise in the range 24-3 dB signal/noise ratio 
with 3 dB intervals. 

6.1.3 Receiver and Data Recording 

At the receiver side, care was taken to adapt the power level to utilise the full dynamic range of the A/D 
converter.  The IF bandwidth of the receiver was set at 100 kHz, well above the signal bandwidth. The 
intention was to allow for optimised post-detection digital filtering of the received sequences. Each signal 
sequence was about 2 seconds long, corresponding to 500 kSamples at a sampling rate of ≈250 kHz. The 
recorded files contained a header section that described the parameters used for data creation, receiving 
and recording.  

6.1.4 Classification Pre-processing and Feature Extraction 

For the purpose of training and testing of the classifier, signals were divided into 2048-sample (8 ms) 
segments. With a symbol rate of 10 kHz, the segment thus consisted of approximately 80 symbols. From 
each individual segment the bandwidth was estimated for digital filtering. The training set consisted of 
400 signal segments (50 segments per signal/noise ratio level) for each of the six modulation formats 
(2ASK, 4ASK, 2PSK, 4PSK, 2FSK and 4FSK). That made, in total, 2400 signal segments for training. 
The testing set consisted of 1144 signal segments (143 segments per signal/noise ratio level) for each of 
the ten modulation formats (16QAM, 32QAM, MSK and π/4DQPSK in addition to the ones above). 

Eight features were extracted from each signal segment before being applied to the classifier. These are 
predominantly time-domain features that are shown to be effective for classifying ASK, PSK and FSK 
formats. The features are described in Table 1. 
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Table 1. Feature extraction (obtained from [3] and [16]). 

Feature Description 
γmax Maximum power spectral density of normalised-centred instantaneous amplitude 
σap Standard deviation of the absolute value of the centred instantaneous phase 
σdp Standard deviation of the centred instantaneous phase 
σaa Standard deviation of the absolute value of the normalised-centred instantaneous amplitude 
σaf Standard deviation of the absolute value of the normalised-centred instantaneous frequency
σda Standard deviation of the normalised-centred instantaneous amplitude 
σdf Standard deviation of the normalised-centred instantaneous frequency 
γmaxf Maximum power spectral density of normalised-centred instantaneous frequency 

  

6.1.5 Neural Network Specifications 

For this experiment we chose to use a MLP with one hidden layer consisting of 10 nodes. We can thus 
represent the MLP structure as 8I-10H-6O, where 'I', 'H' and 'O' represent the input, hidden and output 
layers respectively.  We also used six AANNs with one hidden layer consisting of 5 nodes, thus 8I-5H-8O. 
The networks were trained using the back-propagation learning algorithm. 

6.2 Results 
Assessment of the combined neural network classifier is achieved by comparing it with the individual 
neural network types that it comprises. Useful metrics are 

• Classification rate of known formats. This indicates how well the classifier is able to discriminate 
the modulation format that it has been trained to recognise. 

• Detection rate of unknown formats. This indicates how capable the classifier is at detecting signal 
formats that are unknown to the classifier. (These are classified as "unknown"). 

• False rejection rate of known formats. This is the rate of known formats being falsely rejected 
(classified as unknown). 

• Mix-up rate of known formats. This is the rate of known formats being misclassified as another 
known format.  

These metrics are presented in the following sub-sections. The results are obtained from the confusion 
matrices contained in Appendix B. 

6.2.1 MLP Results 

In order to make the MLP detect unknown formats we accept its classification only if at least one µc > 0. If 
all µc < 0 we classify the input as "unknown". The results from applying only the MLP to the classification 
problem is presented in Table 2. 

Table 2. MLP Results 

Modulation formats Correctly classified Falsely rejected Mixed up 
Known 98.12 % 0.57 % 1.31 % 

Modulation formats Correctly detected Falsely classified 
Unknown 38.22 % 61.78 % 
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From the table we see that the MLP is very good at classifying known signal formats but that it is 
unreliable in detecting unknown signal formats. This is also reflected in how misclassified formats are 
distributed: 1.31 per cent of the known formats are mistaken for another format, whereas the remaining 
0.57 per cent are incorrectly rejected. 

6.2.2 AANN Results 

The results from applying six AANNs to the classification problem are presented in Table 3. The results 
are based on a rejection threshold, τc, which is set to the 85th percentile of the reconstruction errors of the 
training data set.  

Table 3. AANN Results 

Modulation formats Correctly classified Falsely rejected Mixed up 
Known 82.20 % 15.40 % 2.40 % 

Modulation formats Correctly detected Falsely classified 
Unknown 71.88 % 28.12 % 

 
For the AANN classifier, the classification rate of known formats is lower than for the MLP. This 
coincides with the conclusions reached by visually inspecting decision boundaries in Section 4, namely 
that the AANNs perform worse than the MLP in classifying (closely situated) modulation formats. 
However, the detection of unknown formats is considerably better. We also see that a larger proportion of 
misclassified known formats are rejected rather than classified as another format. 

6.2.3 Combined Neural Network Results 

By combining the MLP and the six AANNs above, according to Section 5, we obtain the results presented 
in Table 4. 

Table 4. Combined Neural Network Results 

Modulation formats Correctly classified Falsely rejected Mixed up 
Known 82.56 16.74 0.70 

Modulation formats Correctly detected Falsely classified 
Unknown 88.18 11.82 

 
The table shows that we have obtained a similar classification rate as the AANN classifiers. We also see 
that the detection rate of unknown formats is notably better than both the AANN and the MLP. This is 
because the combined neural network detects both the unknown formats detected by the AANNs, but also 
the (fewer) formats detected by the MLP. Of misclassified known formats, the combined neural network 
regards 16.74 per cent as unknown whereas only 0.70 per cent are mistaken for another format.  

Now, the overall performances of the classifiers depend on the weighting of the importance of classifying 
known formats and detecting unknown ones. In this experiment we have assumed an equal importance, 
thus we obtain the overall results presented in Table 5. 

Table 5. Overall Classification Results 

Classifier Overall Success Rate 
MLP 68.17 % 

AANNs 77.04 % 
Combined Neural Network 85.37 % 
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7.0  DISCUSSION AND CONCLUSION 

Depending on the application (cf. Section 2), the importance of discriminating between known formats 
versus the detection of unknown formats may vary. The combined neural network can accommodate these 
changing requirements by adjusting the parameters in the network. In cases where the detection of 
unknown formats is more important than discriminating between known formats, the detection thresholds 
of the AANNs can be reduced. This will ensure that fewer unknown formats are misclassified as known at 
the expense of a reduced discrimination performance within known formats. If discrimination is more 
important, the AANN thresholds can be relaxed, which will increase the influence of the MLP and hence 
improve the discrimination performance. This, of course, will be at the expense of possibly detecting 
fewer unknown formats. Furthermore, in situations where we want to find appropriate jamming 
techniques, we would rather that the classifier, in case of misclassification, provided a 'second guess' 
rather than refusing to classify altogether. For example, the combined classifier could be adjusted to output 
possible solutions in cases where individual classifiers disagreed rather than labelling them as 'unknown'. 

These issues illustrate the need for addressing problems beyond simply classifying a number of 
modulation formats. Even though we do not imply that, at this stage, the proposed combined neural 
network can readily handle all these problems, our results highlight some important points: 

• Neural networks display good performance with a variety of additive Gaussian noise levels. This 
confirms previous results (cf. Section 3.4). 

• Combining learning systems with different capabilities has been shown to be useful for handling 
more complex problems. 

• The variety of requirements within modulation recognition necessitates adaptable classifiers. In 
this sense, combined classifier systems may be more versatile than stand-alone systems. 

This work has addressed only some of the challenges involved in automatic modulation classification, and 
focused mainly on the last stage of the pattern classification approach (see Figure 1). It is important to note 
that any classification performance is also highly dependent on the effectiveness and accuracy at the 
receiver, pre-processing and feature extraction stages. To address this, comprehensive testing on more 
realistic signals will be necessary in future research. 
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A EXTRACTION OF CERTAINTY FACTORS 

The interpretation of the certainty factors, µc and αc, extracted from the MLP and AANNs, respectively, is 
based on the Stanford Certainty Factor Algebra [17], which is concerned with the combination of 
certainties from different 'experts'. Due to the nature of MLP outputs, yc, when using the 1-of-C 
representation, we find it adequate to transform the outputs to certainty factors directly as  

ccc yy =)(µ  (1)

if –1 < yc < 1, or as 

12)( −= ccc yyµ  (2)

if 0 < yc < 1. The extraction of certainty factors from an AANN, on the other hand, requires more 
calculation, as the AANN does nothing more than trying to reconstruct the input at the output. The first 
step to extract the certainty factor, αc, from the AANN is to obtain a reconstruction error, en, from an 
example, n. If zk is the kth output of the AANN, the reconstruction error can be expressed as 
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where xk is an input and NI is the number of inputs/outputs. If the AANN has been trained using a training 
set Tc, we can obtain a set of training reconstruction errors, Sc, where 

{ }cnc TneS ∈= ,  (4)
 

Sc can now be used to determine the error threshold τc, below which we can assume that n belongs to the 
modulation format c. For example, we can set τc to be the maximum error obtained from the training data 
set, i.e., τc = max(Sc), or, if we want the system to be more sensitive to unknown modulation formats, the 
threshold can be set to the p-th percentile of Sc, p < 100.  

To obtain a certainty factor in the range –1 < αc < 1, we choose to transform the en according to a 
hyperbolic tangent function (cf. Figure 7), which is similar to the activation function of the output nodes of 
an MLP. Thus 
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where K is a constant. As this function never reaches the extremes of –1 or 1, we can define an R, where 
αc(0) = R. Instead of experimenting with different values of K, we can represent K in terms of R 
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 and, finally, replace K in (5) such that  
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Now, we can control the shape of αc by selecting an appropriate R. If R approaches 1, αc will approach a 
step function that changes between 1 to –1 at τc. By reducing R, αc will approach linearity in the range [0, 
2τc]. Typically, we want R to be close to 1 as it represents the certainty value when the reconstruction error 
is 0. In Figure 7, R = 0.99. 

B CONFUSION MATRICES 

Table 6. Confusion matrix for the MLP classifier 

Predicted Format Actual 
Format 2ASK 4ASK 2PSK 4PSK 2FSK 4FSK Unknown 
2ASK 95.98 3.58 0.00 0.00 0.00 0.00 0.44 
4ASK 2.10 95.80 0.44 0.00 0.00 0.00 1.66 
2PSK 0.00 0.00 97.64 1.31 0.00 0.00 1.05 
4PSK 0.00 0.00 0.26 99.56 0.00 0.00 0.17 
2FSK 0.00 0.00 0.00 0.00 99.74 0.17 0.09 
4FSK 0.00 0.00 0.00 0.00 0.00 100.00 0.00 
MSK 0.00 0.00 0.00 100.00 0.00 0.00 0.00 

π/4DQPSK 0.00 0.00 2.10 97.47 0.00 0.00 0.44 
16QAM 0.44 0.35 13.81 7.95 0.00 0.00 77.45 
32QAM 0.61 0.70 14.95 8.74 0.00 0.00 75.00 

 

Table 7. Confusion matrix for the AANN classifier 

Predicted Format Actual 
Format 2ASK 4ASK 2PSK 4PSK 2FSK 4FSK Unknown 
2ASK 83.13 1.92 0.00 0.00 0.00 0.00 14.95 
4ASK 8.22 77.36 0.00 0.00 0.00 0.00 14.42 
2PSK 0.00 0.44 83.57 0.26 0.00 0.00 15.73 
4PSK 0.00 0.09 3.50 81.03 0.00 0.00 15.39 
2FSK 0.00 0.00 0.00 0.00 85.58 0.00 14.42 
4FSK 0.00 0.00 0.00 0.00 0.00 82.52 17.48 
MSK 0.00 0.00 0.52 14.86 0.00 0.00 84.62 

π/4DQPSK 0.00 0.09 5.42 22.90 0.00 0.00 71.59 
16QAM 0.17 18.71 9.09 4.20 0.00 0.00 67.83 
32QAM 0.00 19.76 11.45 5.33 0.00 0.00 63.46 
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Table 8. Confusion matrix for the Combined Neural Network Classifier 

Predicted Format Actual 
Format 2ASK 4ASK 2PSK 4PSK 2FSK 4FSK Unknown 
2ASK 81.73 2.10 0.00 0.00 0.00 0.00 16.17 
4ASK 1.75 80.68 0.00 0.00 0.00 0.00 17.57 
2PSK 0.00 0.00 82.43 0.26 0.00 0.00 17.31 
4PSK 0.00 0.00 0.09 82.43 0.00 0.00 17.48 
2FSK 0.00 0.00 0.00 0.00 85.58 0.00 14.42 
4FSK 0.00 0.00 0.00 0.00 0.00 82.52 17.48 
MSK 0.00 0.00 0.00 15.21 0.00 0.00 84.79 

π/4DQPSK 0.00 0.00 0.09 25.09 0.00 0.00 74.83 
16QAM 0.00 0.00 1.75 1.22 0.00 0.00 97.03 
32QAM 0.00 0.09 1.40 2.45 0.00 0.00 96.07 

        

C ABBREVIATIONS 

AANN Auto-Association Neural Network 
A/D Analogue to Digital 
ASK Amplitude Shift Keying 
FM Frequency Modulation 
FSK Frequency Shift Keying 
IF Intermediate Frequency 
MLP Multi-Layer Perceptron 
MSK Minimum Shift Keying 
π/4DQPSK π/4 Differential Quadrature Phase Shift Keying 
PSK Phase Shift Keying 
QAM Quadrature Amplitude Modulation 
RF Radio Frequency 
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